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Goal 
The goal of this project was to augment LEDA with efficient algorithms in the field 

of graph isomorphism. There are the problems of testing for graph isomorphism, 
subgraph isomorphism, graph monomorphism and graph automorphism. However, all 
known algorithms are not guaranteed to run in worst case polynomial time, although 
graph isomorphism in particular is not even known to be NP-complete. Subgraph 
isomorphism and graph monomorphism are known to be NP-complete, the 
reduction of CLIQUE to either one is trivial. 

All of the problems stated above can be restricted to certain domains, e. g. trees, to 
make more efficient algorithms possible, but we did not devote any effort to these 
special cases here. 

Problem Definitions 
Graph isomorphism is the problem of testing whether two graphs are really the same. 

Two simple graphs ),( GG EVG =  and ),( HH EVH =  are isomorphic if and only if there 
exists a bijective (node) mapping HG VV →Φ :  for which 

HGG EwvEwvVwv ∈ΦΦ⇔∈∈∀ ))(),((),(:,  holds true. This mapping also induces a 
unique mapping between corresponding edges. If the graphs are labelled, the 
condition can be extended to preserve the node and/or edge labels as well. 

Graph automorphism is equivalent to the graph isomorphism between a graph and 
itself. The cardinality of the automorphism is therefore related to its self-similarity. 

Subgraph isomorphism restricts the mapping to a subset of one graph which has at 
least as many nodes as the other one. Two simple graphs ),( GG EVG =  and 

),( HH EVH =  are subgraph isomorphic if and only if there exists an injective (node) 
mapping HG VV →Φ :  for which HGG EwvEwvVwv ∈ΦΦ⇔∈∈∀ ))(),((),(:,  holds 
true.  

Graph monomorphism is a weaker kind of subgraph isomorphism. For 
HG VV →Φ : ,only the condition HGG EwvEwvVwv ∈ΦΦ⇒∈∈∀ ))(),((),(:,  must be 

fulfilled (implication instead of equivalence). 
The cardinality of a graph morphism is the number of feasible mappings. 
Because of the last variant which is not literally an isomorphism, we often use the 

term morphism to include this generalization. 
Sometimes it is useful to restrict the possible node and edge mappings, i. e. some 

relation or characteristic function defines which nodes and edges can be matched 
onto each other respectively. We subsume this with the terms “node compatibility” 
and “edge compatibility”. An easy example would be that each node and each edge 
have a label and only nodes or edges that share the same label may be matched. 
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Algorithm Candidates 
A whole lot of algorithms are studied in the literature. The following table 

summarizes their properties and gives some rationale for selecting two of them for 
implementation, namely VF2 and conauto. 

 
Algorithm Time/Best case Space Comments Subgraph Iso? Directed? 
Ullmann [12] Slow/Ω(n3) O(n3) classic Yes Possible 
VF2 [1] Fast O(n) straightforward Yes Yes 
nauty [6] Faster O(n2)/O(n) badly documented No Yes 
conauto [5] Depends/O(n5) O(n2) uniform behavior No Yes 
Valiente [13] Very slow/Ω(n3) O(n3) descriptive Yes Yes 

 
There are several very different approaches to the problem. The VF2 algorithm 

takes a bottom-up approach. It tries to extend an existing mapping of nodes and 
edges until a full mapping is reached, starting from the empty mapping. This is 
equivalent to a depth-first search in the tree of all possible permutations where 
branches that cannot lead to a feasible solution are pruned quite early. 

nauty as the very counterpart features a top-down method. A partition of the set of 
nodes is incrementally refined until no further refinement is possible. Nodes that 
remain in the same cell are then known to be equivalent (generation of the 
automorphism group). Based on this so-called equitable partition, a canonical 
labelling is constructed. Two graphs are isomorphic if their canonical labellings 
coincide. 

conauto tries to take the best out of both worlds. Its overall approach resembles 
nauty’s, but it does not try to find the full automorphism group which can be quite 
costly in some cases. If it is not able to detect quickly whether two nodes are really 
equivalent, it postpones that decision. When comparing to the second graph it checks 
all possible mappings using backtracking. Nevertheless, the number of mappings to 
check is greatly reduced by this precomputation. 

While nauty performs best for graphs with high self-similarity (large automorphism 
group), VF2 is better for irregular graphs. In total, conauto is a good compromise and 
therefore has a very uniform behaviour. E. g., VF2 takes forever to find the number of 
automorphisms of a large clique, while nauty and conauto finish this task in a 
moment. However, enumerating all automorphisms is quite hopeless for all of them 
since the number grows exponentially in the size of the clique. 

Functionality Options 
There are many different possible kinds of input, output and morphism type that 

you might want to have supported by the library. The following table lists the 
imaginable possibilities for several categories and states to what extent the library 
supports the feature(s). 
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Category Imaginable Possibilities Supported by Implementation 
Graph type directed,  

undirected 
directed;  
undirected can easily be reduced 
to directed by inserting two 
directed edges per undirected one 

Morphism 
type 

graph isomorphism,  
graph monomorphism,  
graph automorphism,  
subgraph isomorphism 

VF2: all;  
conauto: graph isomorphism; 
graph automorphism can easily be 
reduced to graph isomorphism 

Setting one-to-one,  
one-to-many,  
many-to-many 

all; 
however, even better, specialized 
algorithms are known for one-to-
many and many-to-many 

Matching exact,  
inexact 

exact 

Attributes inherent attributes,  
compatibility callback function 

compatibility callback function 

LEDA 
graph data 
structure 
for input 

leda::graph, 
leda::GRAPH<,>, 
leda::static_graph<,> 

all 

Result Boolean test (isomorphic yes/no), 
first found mapping, 
all possible mappings in a list, 
callback for each mapping found 

all 

Algorithm Implementations 

The VF2 Algorithm 
The VF2 algorithm can be used for all morphism types. The fastest variant runs at a 

much higher speed than the original implementation for the problem of graph 
isomorphism. 

First, all variants implemented here copy the data to a static graph data structure 
which is capable of storing additional information needed for the algorithm during 
its run and also gives better performance during access than a non-static graph. 

Implementation Details 
Five variants of the VF2 algorithm exist which document the step-by-step 

improvement in the programming process. They are called vf2-simple, vf2-
better, vf2-best, vf2-exp (experimenting). The latest one, vf2-exp was chosen 
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as the final version and therefore copied to vf2. It is used as default when calling a 
graph morphism algorithm because it is usually the fastest one. In the following, we 
only describe this latest variant since it contains the most differences to the original 
implementation. 

It is mostly unchanged with respect to control flow and recursion when compared 
to the original description. However, several subroutines were optimized by using 
more sophisticated data structure. This improves performance quite a bit. 

In the initial step, for both input graphs, the nodes are sorted by out-degree 
ascending, in-degree ascending. Using this ordering, two static graphs are 
constructed which are used to hold all additional node and edge information that 
will be needed by the algorithm. The sorting step is undocumented in [1], but 
nevertheless used in the original implementation and also gives considerable 
speedup. 

The current state of the recursion must be stored somewhere, too. To minimize side 
effects, all the required variables are contained in an algorithm class. Only the values 
that change during recursion and cannot be backtracked are put onto the call stack.  

As the algorithm often refers to sets of nodes only, the iteration on such a set 
induces an ordering which is not fixed. Hence, there may be little differences in the 
way different implementations run, e. g. in terms of number of recursive calls which 
may lead to huge differences in execution time. 

Very important are the sets (of nodes) T1in, T1out, T2in and T2out. The original 
implementation only stores bit flags for each node which represent its membership in 
the respective set. This makes the iteration over all nodes of a set taking linear time in 
the total number of nodes instead of the number of nodes in the respective set. We 
use a doubly linked list to overcome this problem. Its items, namely the pointers to 
the predecessor node and to the successor node, are stored with each node in the 
node data space provided by the static graph data structure. A special head element 
held in the current recursion contains pointers to the first and the last element of the 
list. As the recursion goes on, a node that is successfully mapped must be removed 
from the lists it is member of. This is achieved by changing the pointers in the 
adjacent nodes to skip over it. However, the item itself remembers its place in the list 
so that it can be efficiently reinserted during backtracking. Doing so is always safe 
since the invariant holds that the list will be exactly in the same state as before the 
recursive call, including all pointers and helper structures. 

Also, the algorithm is in need for the smallest element of a node set several times. 
The ordering is unspecified but must be fixed. Here, we take the very same as in the 
initial step. Although this might look like a situation to apply a priority queue, 
experiments showed that it does not improve computation speed. Apparently, the 
time to update the priority queue dominates the time to find the minimum element. 
Therefore, the minimum element is determined by traversing the complete respective 
doubly linked list. 
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Another subroutine is testing the feasibility of a pair of nodes n1 and n2 to be 
matched. For all edges of n1, the original algorithm looks for a corresponding edge by 
searching all edges of n2 using binary search. However, the LEDA static graph class 
does not support this kind of fast search. Without it, the search for the corresponding 
edge would take quadratic time in the number of adjacent edges in total which is 
inefficient. The following method is better and gives linear complexity:  

For n1, mark each adjacent node that has already been matched. Then, for n2, check 
all adjacent nodes whether they have been marked. If one is not marked, the nodes 
do not form a feasible pair. This procedure can easily be adapted to graph 
monomorphism and subgraph isomorphism. 

The conauto Algorithm 
The conauto algorithm was implemented in two variants. The first one, called 
conauto-basic, uses high-level data structures such as linked lists to store the 
partition of the graph. Its whole data structure is based on the node, edge, 
node_array and edge_array data types from LEDA. However, it is quite slow, 
probably because of fine-grained memory allocation and release as well as cache-
unfriendly pointer jumping. Also, it depends on the graph nodes having increasing 
indices without many gaps since it allocates memory proportional to 
max_node_index(). 

Therefore, a second variant was built, namely conauto-fast. Firstly, it copies the 
given graphs to an internal static graph and associates a step-by-step incrementing 
index to each node. Thus, all subsequent data structures only contain this node 
index. The template parameter ord_t, which must be some signed integer type, 
defines the data type these indices are to be stored in. Memory-saving short is 
probably sufficient since the number of nodes rarely exceeds several thousand. The 
algorithm checks whether ord_t is large enough to hold the maximum node index 
and causes a LEDA error otherwise. Using short will usually limit the number of 
nodes to 215-1 = 32767. 

The conauto-fast version was chosen as the default implementation for the 
conauto algorithm and therefore copied to conauto. 

Please note that the conauto algorithm only supports graph isomorphism and 
graph automorphism testing. It is by design not usable for either testing subgraph 
isomorphism or graph monomorphism. 

Extensions and their Correctness 
While the original algorithm and its implementation only test two input graphs for 

isomorphism, returning a Boolean value, the implementation here was extended so it 
can also compute the cardinality of the isomorphism and enumerate one or all 
feasible mappings. 



 
 

 
 
 
 

 
7 

In the original paper, there is only a weak hint about how to achieve this. Hence, we 
describe it here in more detail. As stated in the paper, the operation of the algorithm 
defines an ordering on the nodes, namely the order in which they are discarded from 
the current partition. There are three ways a node can be discarded. Firstly, a node is 
discarded after having been used as a pivot node. Then, a new cell containing only 
this one node is appended to a list of discarded cells. Secondly, complete cells are 
discarded when they are not linked to the rest of the partition any longer. In this 
case, the whole cell is appended to the list. Thirdly, cells might be remaining when 
the algorithm stops refining the partition. They are appended to the list as well. In all 
three cases and for both graphs, the relative order of the cells in the partition is 
preserved when moving the cells to the list.  

Now, it is easy to generate one or all feasible mappings because cells of the same 
rank in the two lists for the two input graphs correspond to each other. Nodes of 
corresponding cells can be mapped to each other in every possible combination, 
yielding a cardinality factor equal to the factorial of the cell size. If only the 
cardinality itself is requested by the user, the total cardinality is multiplied by this 
factor. Otherwise, a recursive backtracking algorithm enumerates all feasible 
mappings. 

The most important feature of the conauto algorithm, the search for 
automorphisms, affects this process, too. When the algorithm finds out that a couple 
of nodes are equivalent, a backtracking point is removed. However, this would 
divide the cardinality by the number of equivalent nodes. Therefore, this has to be 
accounted by the algorithm during generating the first sequence of partitions. Later, 
the product of all these factors is added to the cardinality in order to achieve the 
correct result. However, this is not enough when actually generating feasible 
mappings. In that case, backtracking must be performed anyway. Thus, in that case, 
the main feature of conauto is mostly useless and the execution time might increase. 

Although the extensions to the algorithm were thoroughly tested and compared to 
the results of other algorithms, their correctness is not formally proven and therefore 
can not be guaranteed at this time. 

General Implementation Details 

Precondition 
If an empty graph (no nodes) is passed as one of the inputs, the LEDA error handler 

is called with the message “Emtpy graph.”. Since all the graph morphism types are 
not defined on empty graphs, it would make no sense to start any computation. Also, 
the LEDA static graphs do not support empty node sets. 

If an algorithm implementation does not support a specific kind of graph morphism 
(e. g. conauto does not support neither subgraph isomorphism nor graph 
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monomorphism), the LEDA error handler is called with the message “Algorithm 
does not support…”. 

So far, no meaningful error number was assigned to these errors, we just took “1” 
for the number. 

Precomputation 
When using a graph more than once in a graph morphism testing procedure, it can 

be more efficient to remember the result of some computation steps that are 
performed for each input graph independently, for later reuse.  

This is in particular time-saving for the conauto algorithm which does a great part 
of its work for each graph independently before finally comparing the results. 

The VF2 does not benefit from such a precomputation that much. Still, however, the 
time for sorting the nodes and constructing the internal static graph can be saved. 

All implementations here support independent precomputation for both input 
graphs which particularly comes in handy when one wants to test all possible pairs 
of a set of graphs for a certain kind of morphism. There is only one exception: For the 
VF2 implementations, both inputs must not be the identical prepared graph data 
structure, i. e. one is not allowed to calculate a graph automorphism using only one 
prepared graph data structure. 

Bad Smells 
Unfortunately, the macro forall_out_edges only works for either regular 

graphs or static graphs, depending on the header files included. Therefore, we had to 
define several new macros to make the program run with both graph types. 
forall_adj_edges_nonstatic is just a copy of the original which is not 
overwritten by the static graph version and therefore still available. 
forall_out_edges_graph_t however works dynamically for both inputs, but 
assumes the typename graph_t to be defined in the context to distinguish between 
the cases. The code can be found in forall.h: 

 
#define forall_out_edges_graph_t(g,e,n) \ 
graph_t::node next_node = g.next_node(n); \ 
graph_t::edge next_edge; \ 
if(next_node != g.stop_node()) \ 
 next_edge = g.first_out_edge(next_node); \ 
else \ 
 next_edge = g.stop_edge(); \ 
for(e = g.first_out_edge(n); e != g.stop_edge() && e != next_edge; e = g.out_succ(e)) 
 
#define forall_in_edges_graph_t(g,e,n) \ 
for(e = g.first_in_edge(n); e != nil; e = g.in_succ(e)) 
 

In addition, we had to add two convenience functions to static_graph.h for 
compatibility: 
 

// compatibility with leda::graph concerning iteration 
inline edge first_out_edge(node n) const { return n->first_out_edge(); } 
inline edge out_succ(edge e) const { return e->next_out_edge(); } 
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inline edge first_in_edge(node n) const { return n->first_in_edge(); } 
inline edge in_succ(edge e) const { return e->next_in_edge(); } 

API 

Algorithm Class Hierarchy 
Each algorithm implementation is encapsulated in a class. However, the actual 

algorithm classes are not accessible to the user directly, they must be instantiated 
through the templated wrapper class graph_morphism<graph_t, impl>.  

The wrapper class implements the interface 
graph_morphism_algorithm<graph_t> which a wealth of definitions, constants 
and methods. An excerpt is given here: 

 
Type definitions used in the subsequent prototypes. 

typedef typename graph_t::node node; 
typedef typename graph_t::edge edge; 
typedef node_array<node, graph_t> node_morphism; 
typedef edge_array<edge, graph_t> edge_morphism; 
typedef leda_cmp_base<node> node_compat; 
typedef leda_cmp_base<edge> edge_compat; 
typedef two_tuple<node_morphism, edge_morphism> morphism; 
typedef list<morphism*> morphism_list; 
typedef leda_callback_base<morphism> callback; 
typedef void* prep_graph; 
 

Default node and edge compatibility functions: All nodes and edges are compatible 
with each other respectively. 
static leda_cmp_base<node> ALL_NODES_COMPAT; 
static leda_cmp_base<edge> ALL_EDGES_COMPAT; 
 

Construct a prepared graph data structure for this algorithm implementation. 
virtual prep_graph prepare_graph(const graph_t& g,  
const node_compat& node_comp = ALL_NODES_COMPAT,  
const edge_compat& edge_comp = ALL_EDGES_COMPAT) const = 0; 
 

Delete prepared graph data structure for this algorithm implementation. 
PRECONDITION: The prepared graph data structure must have been constructed 

by the same algorithm implementation. 
virtual void delete_prepared_graph(prep_graph pg) const = 0; 
 

Statistics: How many recursive calls were needed so far? 
virtual cardinality_t get_num_calls() = 0; 
 

Reset recursive calls counter. 
virtual void reset_num_calls() = 0; 
 

Graph morphism finding methods, described in detail below. 
virtual bool find_iso(const graph_t& g1, const graph_t& g2,  
node_morphism* _node_morph = NULL, edge_morphism* _edge_morph = NULL,  
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const node_compat& _node_comp = ALL_NODES_COMPAT,  
const edge_compat& _edge_comp = ALL_EDGES_COMPAT) = 0; 
 
virtual cardinality_t cardinality_iso(const graph_t& g1, const graph_t& g2, 
const node_compat& _node_comp = ALL_NODES_COMPAT,  
const edge_compat& _edge_comp = ALL_EDGES_COMPAT) = 0; 
 
virtual cardinality_t find_all_iso(const graph_t& g1, const graph_t& g2, 
list<morphism*>& _isomorphisms,  
const node_compat& _node_comp = ALL_NODES_COMPAT,  
const edge_compat& _edge_comp = ALL_EDGES_COMPAT) = 0; 
 
virtual cardinality_t enumerate_iso(const graph_t& g1, const graph_t& g2, 
leda_callback_base<morphism>& _callback,  
const node_compat& _node_comp = ALL_NODES_COMPAT,  
const edge_compat& _edge_comp = ALL_EDGES_COMPAT) = 0; 
 

Graph morphism double-checking methods, described in detail below. 
bool is_graph_isomorphism(const graph_t& g1, const graph_t& g2, 
node_morphism const* node_morph, edge_morphism const* edge_morph = NULL,  
const node_compat& node_comp = ALL_NODES_COMPAT,  
const edge_compat& edge_comp = ALL_EDGES_COMPAT); 
 
bool is_subgraph_isomorphism(const graph_t& g1, const graph_t& g2, 
node_morphism const* node_morph, edge_morphism const* edge_morph = NULL, 
const node_compat& node_comp = ALL_NODES_COMPAT,  
const edge_compat& edge_comp = ALL_EDGES_COMPAT); 
 
bool is_graph_monomorphism(const graph_t& g1, const graph_t& g2, 
node_morphism const* node_morph, edge_morphism const* edge_morph = NULL, 
const node_compat& node_comp = ALL_NODES_COMPAT,  
const edge_compat& edge_comp = ALL_EDGES_COMPAT); 
 

Semantics of the Main Methods 
A method of the algorithm object has to be called to find out about the desired kind 

of morphism. There are tons of options about the parameters and the desired result. 
Do you only want to test for existence of a certain kind of morphism? Or do you 
want to get returned an actual mapping or even all mappings? Is there a restriction 
on the node and edge mapping? 

The find_ prefix means just testing the existence of a morphism and returning the 
first found feasible mapping if applicable. cardinality_ makes the algorithm 
return the number of possible mappings while the find_all_ methods append all 
possible mappings to a list of two-tuples of a node array and an edge array. 
enumerate_ is a variant that calls a user-defined callback function each time when a 
morphism is discovered. 

The methods for subgraph isomorphism and graph monomorphism are omitted in 
the listing. Just replace iso by sub and mono respectively (2 more variants per 
method). There are no explicit calls for graph automorphism. Just pass the same 
graph twice to the desired iso routine. 
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Basic Input and Output 
All methods take two graphs as their first two parameters. For subgraph 

isomorphism and graph monomorphism, the first graph is the one of which a 
subgraph is determined in order to map the second graph onto it. So to gain a 
positive result, the second graph must contain no more nodes and no more edges 
than in the first one. Otherwise, no mapping is possible anyway. 

Each input graph can be passed as a graph_t which in is substitutable by graph, 
GRAPH<,> or static_graph<,>, but also as a precomputed graph morphism 
data structure (specific for the used algorithm), too. These 3 more variants per 
method have been omitted in the above interface listing for clarity. 

The returned morphism mapping for nodes and edges is stored in a node and an 
edge array respectively which must be parameterized with the node reference type of 
the original graph which is passed first, and initialized with the original graph which 
is passed second. If this additional information is not needed by the caller, a NULL 
pointer may be passed to prevent its computation. Otherwise, in case a morphism is 
found, for each node and edge of the second graph, the corresponding one in the first 
graph is referenced. 

All methods except the ones the ones only seeking to find the first morphism, 
return the cardinality of the found morphism. Since this number can be very large 
even for small graphs, it is passed in a LEDA integer which can handle arbitrary 
long integer numbers. However, this behavior can be changed by defining 
cardinality_t differently, e. g. to long. 

In total, there are 48 different methods provided for finding all kinds of graph 
morphisms with all kinds of inputs and outputs.  

Callback Mechanism 
When using the enumerate call of the algorithm, the passed function will be called 

back each time a morphism of the desired kind is found. It will be passed a node and 
an edge array with the found mapping from the second to the first graph, as before. 
Whether the algorithm continues to look for further mappings depends on the 
Boolean value returned by this callback function. true makes the search terminate 
instantly. Once more, the design pattern resembles the leda_cmp_base<> class. 
However, in this case, the underlying class is called leda_callback_base. The 
functionality can be incorporated by either passing a C-style function pointer or 
deriving from the class and overriding the ()-operator. 

Node and Edge Compatibility 
The last two parameters most methods deal with node and edge compatibility. If no 

compatibility functions are passed by the user, all nodes and edges are considered 
compatible with each other respectively. Technically, this is achieved by passing the 
predefined functors ALL_NODES_COMP and ALL_EDGES_COMP by default. 
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The callback mechanism for checking compatibility of nodes and edges uses the 
leda_cmp_base<> approach whereby additional semantics may be required. Either 
a functor class derived from leda_cmp_base<> or a simple function pointer can be 
used. In the latter case, the function pointer will be encapsulated by an instance of 
leda_cmp_base<> which is constructed through implicit conversion. The 
comparison function takes two references to the according node types. 

For the VF2 variants, it only is supposed to return 0 for the both nodes being 
compatible and a non-zero value otherwise. In this case, the node of the first graph is 
always passed as the first parameter. This is important in case the relation is 
asymmetric with respect to the graphs.  

For the conauto variants, additional properties are claimed. The compatibility 
function is not only to be an equivalence relation on the set of both graph’s nodes, 
but also has to define a total ordering of non-equivalent ones. 

Sample code is given here which bases node compatibility on the standard order of 
the node data given by the compare function. 

 
template<typename T> 
class identity_compatibility: public leda_cmp_base<node> 
{ 
private: 
 typedef node_map<T> node_map; 
 const node_map& info1, info2; 
 
public: 
 identity_compatibility(const node_map& _info1, node_map& _info2) : 
info1(_info1), info2(_info2) 
 { 
 } 
 
 virtual int operator()(const node& n1, const node& n2) const 
 { 
  const T* i1, * i2; 
  if(info1.get_graph().member(n1)) 
   i1 = &info1[n1]; 
  else 
   i1 = &info2[n1]; 
             
  if(info1.get_graph().member(n2)) 
   i2 = &info1[n2]; 
  else 
   i2 = &info2[n2]; 
             
  return compare(*i1, *i2); 
 } 
}; 

Double-checking Correctness 
For each kind of morphism, methods are provided which double-check the 

correctness of a mapping. Those start with is_ and take the mappings for both 
nodes and edges (optional) as a parameter. Actually, the implementation is not 
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optimized for performance and also does not depend on the algorithm object. It does 
not change the state of the algorithm object and is non-static for convenience only. 
The methods return true if the mapping is a morphism of the desired kind and 
false otherwise. 

Precomputation 
To benefit from precomputed internal data structures, just call the prepare_graph 

method of the respective algorithm object. The returned prep_graph value (a 
anonymous pointer) can be passed instead of the original graph in subsequent 
isomorphism calls. However, you must always pass an internal structure of the 
algorithm implementation that you are using to perform the actual computation. The 
data structures must be destroyed using delete_prepared_graph to avoid a 
memory leak.  

Both methods do not change the state of the algorithm object and are non-static for 
convenience only. 

Statistics 
The method get_num_calls() provides some statistical information, namely the 

number of recursive calls the algorithm had to perform to solve the problem. The 
counter must have been reset before by calling reset_num_calls(). Since 
counting degrades performance slightly, it is switched off by a compiler switch by 
default. You must define CALL_COUNT in graph_morphism_algorithm.h to 
make it work. 

Available Implementations 
As mentioned above, the user must instantiate graph_morphism<impl> with an 

optional implementation parameter first, and then call the desired method(s) to run a 
computation. Since all classes are pretty light-weight, you do not have to worry 
about the costs of constructing and deleting them. 

For VF2, valid implementation parameters are vf2<graph_t>, 
vf2_simple<graph_t>, vf2_better, vf2_best, and vf2_exp<graph_t>. 
They have evolved during different stages of optimization. The default is vf2 which 
is at this time equivalent to vf2_exp. Those implementations except vf2 may not 
support all the advanced features like subgraph isomorphism testing or node and 
edge compatibility. Particularly, vf2_better and vf2_best only support graph 
as input. A compile time or LEDA error occurs if unsupported features are 
requested. 

For conauto, there exists conauto_basic<graph_t> and 
conauto_fast<graph_t, ord_t> which is equivalent to conauto<graph_t, 
ord_t>. Please note that the conauto implementation of node compatibility is more 
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restricted compared to the one provided by the VF2 variants. Also, conauto does not 
support edge compatibility at all. 

 

 
 
The VF2 variants derive from vf2_base<graph_t>, the conauto variants derive 

from conauto_base<graph_t>. Both these base classes on their part derive from 
graph_morphism_base<graph_t>. They are all parameterized with the type of 
the input graphs. Please note that it is not possible to mix different types of input 
graphs. 

Sample Code 
The following code tests two graphs for isomorphism using the conauto algorithm, 

whereby for the first graph a precomputed data structure is used and also node 
compatibility is required. The steps in brackets [] can be omitted when not using 
precomputation or node compatibility. 
 

1. Include header file. 
#include <LEDA/graph/graph_morphism.h> 
 

2. Declare the input graphs. 
graph g1, g2; 
 

3. In order to use node compatibility, declare associated node maps for the 
attributes and a corresponding node compatibility function (exemplary, see above for 
the definition of identity_compatibility) . 
node_map<int> nm1(g1), nm2(g2); 
identity_compatibility<int> ic(nm1, nm2); 
 

4. Do something useful to build up the graphs and the attributes. 
/* build up graphs... */ 
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5. Instantiate the algorithm object. 
graph_morphism<graph, conauto<graph> > alg; 

 
6. Declare the node and edge mapping arrays. 

node_array<node> node_mapping(g2); 
edge_array<edge> edge_mapping(g2); 

 
7. Prepare a graph morphism data structure for the first graph. 

graph_morphism_algorithm<>::prep_graph pg1 = alg.prepare_graph(g1, ic); 
 

8. Find the graph isomorphism. 
bool isomorphic = alg.find_iso(pg1, g2, &node_mapping, &edge_mapping, ic); 
 

9. Delete the prepared graph data structure again. 
alg.delete_prepared_graph(pg1); 
 

 
The shortest way to just test for isomorphism without using any of the advanced 

features is this one-liner: 
 
bool isomorphic = graph_morphism<>().find_iso(g1, g2); 

Testing Environment 
We implemented a standalone program which tests the functionality of this library, 

double-checks the result and measures execution time for the own implementation as 
well as for earlier implementations of algorithms for this problem like the original 
VF2 implementation [3], Valiente’s algorithms [13] and the nauty package [8]. Input 
can be read from files in the LEDA .gw format1 and files from the Graph Database 
[2]. The program does not feature any GUI but is controlled entirely through the 
command line.  

The program takes a number of options for the algorithm(s) to use and the 
morphism to search for, and either one or two file names or a directory path. If two 
file names are passed to the program, two graphs are read from them and the desired 
morphism is searched for. If only one file name is given, the program tries to 

                                                 
 
 
 
 
 
 
 
 
1 However, only the own implementations support this input file type. 
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reconstruct the second one by the rules of the graph database (replacing the A in the 
extension by a B). If a directory is passed, it is assumed to be a part of the graph 
database. All corresponding graphs in the directory and all subdirectories are 
matched against each other. 

The external algorithms are included through static libraries built by independent 
projects. They are called VF2, Conauto, Nauty, Valiente. 

 
Option Effect 
-iso|-sub| 
-mono | -auto 

search for graph isomorphism, subgraph isomorphism or graph 
monomorphism, defaults to -iso 

(-[alg])* algorithm(s) to use, multiple options of this kind allowed, 
e. g. -conauto-fast -vf2; the external ones are: nauty, vf2-orig, vf2-
orig-nosort, valiente, conauto-orig 

-map show all found mappings using node indices 
-files show the names of the processed files 
-details show timing results for each graph size separately 
-num_calls show the number of recursive calls for each algorithm (only in 

combination with –details) 
-first | -card | 
-all | -enum 

check for isomorphism only / determine cardinality of the 
morphism / compute all feasible mappings and compare them 
between the algorithms / call a callback function for each discovered 
morphism; defaults to -all 

-ncomp check the nodes for compatibility2 
-ecomp check the edges for compatibility 
-micro m microcensus mode: 

only process m first graphs/graph pairs for each size (database) 
-max n only consider graphs with at most n nodes 
-stress r run each test r times to test the correctness and efficiency of 

precomputation 

                                                 
 
 
 
 
 
 
 
 
2 The graphs must be given through .gw files that contain a string associated with every node or 

edge respectively. For VF2, two nodes or edges are compatible if the string of the second one contains 
the string of the first one. For conauto, two nodes are compatible if they share the same label. 
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-exp c show a warning message if the morphism cardinality does not 
match the expected number c 

-crosscheck Test all pairs of files in a folder for the desired morphism. This 
option can be combined with –micro to avoid long execution times. 

-cache Keep precomputed graph morphism data structures in memory for 
all graphs of the folder and reuse them whenever possible. Only 
practical in combination with –micro because of the large memory 
requirements. Particularly useful with –crosscheck and/or –stress. 

 
Example: GraphIsomorphisms -vf2 –conauto -details iso\ in directory 
GraphDatabase\graphs\. 

Compile Time Options 
By defining the symbol USE_STATIC_GRAPHS in interface.cpp to a static 

graph implementation, e. g. opposite_graph, the program is forced to use static 
graphs for the algorithms’ inputs und thus to test the library with static graphs as 
template parameters. The number defined for PREP_INPUT controls the 
precomputation. If it is equal to 0, no precomputation is performed, defining it to 1 
means preparing the first graph, defining to 2 means preparing only the second 
graph. Setting PREP_INPUT to 3 forces preparation for both graphs and also enables 
the –cache command line option (see above). 

Correctness Tests 
We run a lot of tests on the Graph Database to test the correctness of the algorithms. 

After diverse algorithms have solved the same problem, the results (including the 
mappings) are firstly checked for plausibility and the tested for equivalency among 
the results from the different algorithms. 

You can find a reasonable set of test RegressionTest.bat, a log file of its 
execution is appended to this report. 

Demo Program 
A demo program named “gw_isomorphism” features the GraphWin GUI. Graphs 

can be loaded or constructed graphically. The framework has been extended by a 
function to load and save files in the GraphDatabase format. However, the 
integration of the corresponding menu items is quite a hack; it uses submenu indices 
that may change in the future. 

Space Complexity 
Although no tight bounds for time complexity can be stated, space complexity is 

quite easy. 
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vf2’s heap memory requirement is linear in the number of nodes n plus the 
number of edges m, i. e. O(n+m). In addition, the implementation needs linear stack 
space, O(n). Experiments showed that 156 bytes of stack per node (of the smaller 
graph) are required when compiled using the Microsoft Visual C 7.1 compiler with 
debug information as well as stack checking disabled. 
conauto uses much more memory. The sequences of partitions and the adjacency 

matrix consume an amount of memory proportional to the squared number of nodes, 
i. e. O(n2). In the worst case, it also consumes a linear amount of stack space, under 
same conditions as before 36 bytes per node. 

Benchmarks 

Setup 
All benchmarks were run on a Windows-XP based PC equipped with a 2GHz AMD 

Athlon 64 processor and 1 GB of RAM. Only the net time for actually executing the 
algorithm was accounted for, excluding the time for loading and setting up the 
graphs. 

Results 

VF2 Family 
The tables and diagrams show the speedup of the own VF2 implementation against 

the original one. The test covered all of the graph isomorphism examples in the 
GraphDatabase. The algorithms had to compute the cardinality of the isomorphism, 
which for VF2 effectively means enumerating all possibilities, but not storing them. 
All values are times measured in seconds. 

 

 vf2 vf2-orig 
vf2 
speedup 

iso\bvg\b03\ 0,535403 2,876783 5,37311707 
iso\bvg\b03m\ 8,304005 240,175857 28,9228941 
iso\bvg\b06\ 0,603268 2,729346 4,52426782 
iso\bvg\b06m\ 0,783883 3,154874 4,0246746 
iso\bvg\b09\ 1,953448 3,696382 1,89223465 
iso\bvg\b09m\ 1,522252 6,223396 4,08828236 
iso\bvg\ 13,702259 258,856638 18,8915301 
iso\m2D\m2D\ 0,489611 4,864756 9,93596141 
iso\m2D\m2Dr2\ 0,908287 3,524034 3,87986837 
iso\m2D\m2Dr4\ 1,194296 3,311428 2,77270291 
iso\m2D\m2Dr6\ 1,270361 3,471949 2,73304124 
iso\m2D\ 3,862555 15,172167 3,92801319 
iso\m3D\m3D\ 2,023119 14,288289 7,06250547 
iso\m3D\m3Dr2\ 1,126221 3,126599 2,77618602 
iso\m3D\m3Dr4\ 1,235899 3,578689 2,89561607 
iso\m3D\m3Dr6\ 1,347986 3,998963 2,96662057 
iso\m3D\ 5,733225 24,992541 4,3592465 
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iso\m4D\m4D\ 209,251542 623,633003 2,98030302 
iso\m4D\m4Dr2\ 0,69477 2,947433 4,24231472 
iso\m4D\m4Dr4\ 0,89633 3,38504 3,77655551 
iso\m4D\m4Dr6\ 1,04443 4,035 3,8633513 
iso\m4D\ 211,887073 634,000475 2,99216213 
iso\rand\r001\ 2,271437 9,001015 3,9626963 
iso\rand\r005\ 6,416066 17,109782 2,66670916 
iso\rand\r01\ 12,165394 24,43972 2,00895425 
iso\rand\ 20,852897 50,550517 2,4241484 
iso\ 256,038008 983,572339 3,84150911 
    
geometric mean   4,1122011 
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We can conclude that our implementation is about 4 times as fast as the original one 

for the problem of graph isomorphism. Further test showed that the results are 
similar for the individual problem sizes. In particular, we were able to eliminate the 
exceptionally bad execution times of the original implementation for large graphs of 
the b03m type (modified 3-valent). 

For subgraph isomorphism, our implementation is only slightly faster in total.  
Even worse, for graph monomorphism, singular examples from the GraphDatabase 

(from the class random graphs with 10% edge probability) make our implementation 
take very long time to finish. This behavior disappears when abandoning the sorting 
by degree in the initial step which improves all other cases significantly. Apparently, 
there must be some examples in the database that represent a worst case for 
specifically our implementation. The implementation vf2_exp contains a special 
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sorting routine where nodes are clustered by the same degrees and the clusters are 
then sorted by size. This eases this case, but makes graph isomorphism taking much 
longer time on the opposite. Because of the time requirement, we only could test with 
instances of small graphs. It looks like moving to larger graphs make all algorithms 
take an impossibly long time anyway. 

conauto Family 
Testing was performed similarly to the VF2 case. The only difference was that the 

algorithms had to test for isomorphism only. This is because the original 
implementation can neither count nor enumerate the possible mappings. 

 

 conauto 
conauto-
orig 

conauto 
speedup 

iso\bvg\b03\ 10,974554 8,623087 0,78573462 
iso\bvg\b03m\ 14,412126 9,297717 0,64513154 
iso\bvg\b06\ 19,071365 11,812264 0,61937171 
iso\bvg\b06m\ 19,760526 11,376455 0,5757162 
iso\bvg\b09\ 19,095762 11,92287 0,62437257 
iso\bvg\b09m\ 17,687889 8,810201 0,49809228 
iso\bvg\ 101,002222 61,842594 0,61228944 
iso\m2D\m2D\ 54,457727 33,95911 0,62358662 
iso\m2D\m2Dr2\ 21,970786 13,968351 0,63576929 
iso\m2D\m2Dr4\ 23,299137 16,519131 0,70900184 
iso\m2D\m2Dr6\ 25,535138 17,598253 0,68917791 
iso\m2D\ 125,262787 82,044845 0,65498179 
iso\m3D\m3D\ 47,869859 41,082517 0,85821262 
iso\m3D\m3Dr2\ 18,396495 10,758553 0,58481537 
iso\m3D\m3Dr4\ 19,827667 11,070814 0,55835182 
iso\m3D\m3Dr6\ 22,253122 11,713282 0,52636578 
iso\m3D\ 108,347144 74,625166 0,68875988 
iso\m4D\m4D\ 39,786547 29,458302 0,74040861 
iso\m4D\m4Dr2\ 35,369033 18,89187 0,53413589 
iso\m4D\m4Dr4\ 41,524554 20,999195 0,50570549 
iso\m4D\m4Dr6\ 44,928156 20,722194 0,46122957 
iso\m4D\ 161,60829 90,07156 0,55734492 
iso\rand\r001\ 17,065507 11,302994 0,66232981 
iso\rand\r005\ 14,589887 3,738765 0,2562573 
iso\rand\r01\ 16,620824 3,582802 0,21556103 
iso\rand\ 48,276218 18,624561 0,38579163 
iso\ 544,496661 327,208726 0,60093798 
    
geometric mean   0,56410127 
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Speedup conauto conauto-orig
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Apparently, our implementation is slower than the original one, approximately half 

as fast. This is probably due to abstaining from bit vector manipulation and also to 
virtual function calls to comparator functors during sorting. 

The performance degrades even more when asking for an enumeration of all 
possible mappings. But this is not very astonishing, and the original implementation 
is not capable of doing that at all. 

Directory and File Structure of the Project 
The implementation was done using Microsoft Visual Studio.net 2003 (7.1). A 

project called “GraphIsomorphisms” references all necessary files. A CVS repository 
was used as well and can be helpful when having to reproduce the development 
process. The files are located in the CVS directory. 

In fact, the project folder contains more files than absolutely necessary for the 
project. This is because several files became obsolete during the process but should 
not be lost from the CVS. Also, the folder contains several files that form the test 
program and are not needed for the library functionality itself. Therefore, the solution 
“GraphIsomorphisms” contains two projects, GraphMorphismTest and 
GraphMorphismLibrary. The latter includes only the files that implement the raw 
functionality, without test program. However, for the final version to be integrated 
into LEDA, one would probably discard the premature implementations of the 
algorithms, and stick with the final ones vf2 and conauto only. 

The following table describes the purpose of each file. 
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BinaryGraphReader.h 
BinaryGraphReader.cpp 

reads in the 
GraphDatabase format 

 *   

GraphIsomorphisms.cpp main test program  *   
graph_isomorphism.h 
 

renamed to 
graph_morphism.h 

*    

graph_morphism.h main header file   * * 
graph_morphism_algorithm.h main interface   * * 
graph_morphism_checker.h correctness checkers   * * 
interface.cpp  
interface.h 
 

wrapper for the own 
library and external 
libraries 

 *   

IOException.h helper class for testing  *   
PerfTimer.cpp 
PerfTimer.h 

fine-grained timer for 
Windows 

 *   

_bounded_ordered_partition.h 
 

helper class for 
conauto/conauto-fast 

  * * 

_bounded_ordered_partition.cpp empty file *    
_callback_base.h interface for the callback 

functionality 
  * * 

_compose.h composition class 
(derives from two 
classes) 

  * * 

_conauto.h 
 

conauto final 
implementation 

  * * 

_conauto_base.h 
_conauto_base.cpp 

base class for all conauto 
implementations 

  * * 

_conauto_basic.h 
_conauto_basic.cpp 

conauto-basic 
implementation 

  *  

_conauto_fast.cpp empty file *    
_conauto_fast.h 
 

conauto_fast 
implementation 

  *  

_conauto_types.h content moved to 
_ext_adjacency_matrix.h

*    

_equiv_base.h class replaced by *    
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leda_cmp_base<> 
_ext_adjacency_matrix.h 
_ext_adjacency_matrix.cpp 

helper class for 
conauto_basic 

  *  

_ext_bounded_adjacency_matrix.h helper class for 
conauto/conauto-fast 

  * * 

_ext_bounded_adjacency_matrix.cpp empty file *    
_forall.h extended graph 

iteration 
  * * 

_graph_isomorphism.cpp old API *    
_graph_morphism_base.h base class for all 

algorithms 
  * * 

_ll_item.h helper class for 
vf2_better, vf2_best 

  *  

_morphism_base.h 
_morphism_base.cpp 

renamed to 
graph_morphism_base.* 

*    

_node_comparator.h helper class for all VF2 
algorithms 

  * * 

_node_disjoint_set.h 
 

helper class for conauto-
basic 

  *  

_node_disjoint_set.cpp empty file *    
_node_ordered_partition.h helper class for conauto-

basic 
  *  

_node_ordered_partition.cpp empty file *    
_vf2.h final VF2 

implementation 
  * * 

_vf2.cpp empty file *    
_vf2_base.h base class for all VF2 

implementations 
  * * 

_vf2_best.cpp 
_vf2_best.h 

vf2-best implementation   *  

_vf2_better.cpp 
_vf2_better.h 

vf2-better 
implementation 

  *  

_vf2_exp.h 
 

vf2-exp implementation   *  
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_vf2_exp.cpp empty file *    
_vf2_simple.h vf2-simple 

implementation 
  *  

_vf2_simple.cpp empty file *    
GraphMorphismLibrary.vcproj library build project   * * 
GraphMorphismTest.vcproj test project     
 

All files that are not supposed to be included by the user are prefixed with an 
underscore. 

Compiler Compatibility 
The library was developed using the Microsoft Visual C 7.1 compiler. The final 

version was also adapted to compile with GCC 3.4. Thus, the code is likely to be fully 
ISO-C++ compliant. 

Source Code Documentation 
In order to be able to generate documentation files automatically using Lman, some 

machine processable comments were added to graph_morphism_algorithm.h 
and graph_morphism.h. 

Possible Improvements 
• Extend the algorithms to non-simple graphs. Work-around: Use edge 

compatibility functions which compare multiplicity. 
• Partition the graphs into connected components first and run the algorithm 

for pairs of these whereupon each of the two belongs to a different graph. 
• Avoid copying the input graphs in vf2 which takes considerable time. 

However, one must still sort the nodes. Would it be allowed to change the 
order of the nodes of input graph? 

• Speed up the conauto implementation by avoiding the LEDA sorting 
routines and therefrom the comparison functors which involve virtual 
function calls. 

• Implement another improvement found in the original implementation but 
not documented in the paper: Build the initial sequence of partitions for both 
graphs (by precomputation where applicable) and estimate the backtracking 
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complexity for each of them. Then, choose the  graph with less complexity as 
the first graph. 

• Prove the correctness of the conauto extensions, i. e. the calculation of the 
cardinality, the generation of mappings, and the support of node 
compatibility. 

• Combine any graph isomorphism algorithm implementations in the 
following way: All algorithms start solving the problem in parallel, for 
example through (user-level) multi-threading. Then stop the whole 
computation when one of them is finished. This approach could avoid the 
possibly extremely long execution time for some algorithm while preserving 
its good performance in the easy cases, thereby reducing the average 
performance only by a constant factor. However, there is the problem of 
implementing this platform-independently. 

• Easy variant of the latter: Integrate the fast initial check for compatibility by 
conauto into the VF2 implementation. This may rule out non-isomorphic 
graphs quickly, but those are simple cases anyway. 

• Add a reimplementation of nauty. A possible improvement could be the 
usage of a generalized degree as in conauto (0 = not connected, 1 = connected 
incoming, 2 = connected outgoing, 3 = connected both ways). 

• Test the performance of all algorithms on non-isomorphic, but “similar” 
graphs. Since such hard examples are difficult to construct, most scientific 
literature avoid this topic, too. However, the conauto inventor appears to be 
interested in those [5]. 

• Improve the VF2 performance for graph monomorphism. First one would 
have to analyze why certain random graphs make the algorithm take such a 
long time and why this does not apply to the original implementation. 
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